Range of Application

Universal balancing machines series HM are designed for accurate balancing of a wide spectrum of rotors. They are suitable for balancing cylindrical rotors with integral shaft journals and for balancing disc shaped rotors on balancing arbors.

Typical rotors are electrical armatures, rolls and turbines up to 250 tonnes, ventilators, pump impellers and drive elements.

Permanent calibration, ergonomic design and logical operating sequences facilitate operation.

Their modular design principle and a wide range of accessories make the machine highly flexible.

Schenck universal balancing machines series HM are a highly efficient investment both for one-off rotors and small batches.

Universal application

High balancing accuracy

Easy to upgrade through modular design and a wide range of accessories

Hard-bearing design ensures quick change-over from one rotor to the next

Ergonomically designed CAB 700 or CAB 920 measuring instrumentation with superior functionality

Full range of safety equipment for all protection classes

Horizontal Balancing Machines

Series HM6/HM60, HM7/HM70, HM8/HM80
Sequence of operation

- Manual loading of the rotor on the bearing pedestals, closing of counter bearings and coupling the drive system (belt or universal joint shaft).
- Closing of protection device and start of the automatic measuring sequence:
 - Acceleration, determination and display of unbalance on the measuring instrument, deceleration. The measured unbalance values are retained after the measuring run is completed.
 - Opening of the protection device, manual unbalance correction (if necessary).
 - Verification of residual unbalance (measuring unit indicates whether the required tolerance has been reached) and unloading of the rotor from the machine.

Special features

- High ease of operation: Hard-bearing design eliminates the need for calibration runs.
- Machine provides for unbalance correction in two planes or separate correction of static and couple unbalance.
- Rotors can be mounted on their original shaft or balancing arbor on roller bearings or with oil sleeve bearings (available as option).
- Indexing angle display in case of belt drive.
- Automatic measuring cycle with selectable, infinitely variable acceleration, measuring and deceleration times.
- Upgradable with many supplementary modules, e.g. for mass correction.

Drive systems

Unserslung Belt Drive (BU)
Universal-Joint Drive (U)

Selection of a drive system is determined by the shape of your rotors. Combinations of different drive systems on one machine are possible. Unserslung belt drives (BU) provide for smooth operation and are universally applicable. Universal joint drives (U) in cases where high drive power is required.

HM bearing pedestals: Slim, robust bearing pedestals ensure high overall stiffness, high linearity and extremely low damping. Use of the Schenck hard-bearing principle, with the middle section of the bearing pedestal designed as a sturdy dynamometer. Sensors are arranged outside of the force path and are therefore insensitive to impacts.
The choice of protective enclosure is determined by the danger the rotor presents, with due consideration to the balancing speed, the method of unbalance correction and the maximum penetration energy of rotor components or fragments. Depending upon the varying protection requirements, ISO 7475 specifies five protection classes (0, A, B, C, D) for balancing machines.

Series HM balancing machines usually require Class B or C enclosures. Safety class B should be chosen if contact with the rotor or parts of the drive systems may result in injury. Class C is to be used in cases where the hazard of fragments detaching from the rotor cannot be ruled out entirely. The size, shape, hardness and tangential speed of a projected fragment are used to calculate the penetration potential. The safety enclosure must be capable of containing any such projected rotor fragment.

Balancing in research and development, in a repair shop, in one-off production or in the production of small batches makes entirely different demands on the measuring systems. Schenck has the right microprocessor-based measuring instrumentation for you, whatever your balancing task. All measuring units offer a consistent operating philosophy, highest accuracy for processing of measured data, and a clear and easy-to-read display. They process measurement signals and provide for direct display of amount and angular position of unbalance. Permanent calibration means that only very few geometric data have to be entered to set the unit for a new rotor type. Features such as storage of measured values, indexing display or the display of instructions help the user to perform the balancing process quickly and efficiently.

The CAB 920 offers extended functionality and superior ergonomics. A variety of application specific software modules are available for both measuring units.
Important data at a glance

<table>
<thead>
<tr>
<th>Machine</th>
<th>HM 6</th>
<th>HM 60</th>
<th>HM 7</th>
<th>HM 70</th>
<th>HM 8</th>
<th>HM 80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotor weight, max</td>
<td>[kg]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12500</td>
<td>20000</td>
<td>32000</td>
<td>50000</td>
<td>125000</td>
<td>250000</td>
</tr>
<tr>
<td>Diameter, max (D1) (3)</td>
<td>[mm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2100</td>
<td>2100</td>
<td>2800</td>
<td>2800</td>
<td>3600</td>
<td>3600</td>
</tr>
<tr>
<td>Bearing journal diameter</td>
<td>[mm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40 - 180</td>
<td>50 - 200</td>
<td>60 - 250</td>
<td>70 - 300</td>
<td>70 - 300</td>
<td>70 - 300</td>
</tr>
<tr>
<td>Bearing centre distance (L1) (3)</td>
<td>[mm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3150</td>
<td>4650</td>
<td>5050</td>
<td>5050</td>
<td>5800</td>
<td>5800</td>
</tr>
<tr>
<td>Minimum achievable residual unbal. [gmm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>40</td>
<td>64</td>
<td>80</td>
<td>180</td>
<td>240</td>
</tr>
<tr>
<td>Drive power (3)</td>
<td>[kW]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>37</td>
<td>55</td>
<td>75</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>Rotor drive (1)</td>
<td>U; BU (2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>400V ± 10%, 3Ph, 50Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measuring instrumentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAB 700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paint finish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RAL 7024 / 7035 graphite grey / light grey</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Options

- Measuring unit CAB 920
- Reference system for peak power, ... (c.f. Brochure RC 1034)
- Additional software: Operator support, documentation, unbalance correction calculations
- Printer with mounting kit: For documentation of the balancing process
- Roller carriage inserts for rotor (3) [mm]:
 - 180 - 320
 - 200 - 400
 - 250 - 500
 - 300 - 600
- Class B protection to ISO 7475: Protection against contact with rotating parts
- Class C protection to ISO 7475: Protection against projected fragments

(1) Drive system: BU: Universal belt drive; U: Universal-joint drive, 3-speed
(2) As an option or additional
(3) Other data on request

SCHENCK RoTec GmbH
Landwehrstraße 55
64293 Darmstadt
Germany

Tel.: +49 (0) 61 51 - 32 23 11
Fax: +49 (0) 61 51 - 32 23 15
eMail: rotec@schenck.net

Make use of our worldwide distribution network.
Please see us at http://www.schenck-rotec.com
